Intrinsic optical signals in rat hippocampal slices during hypoxia-induced spreading depression-like depolarization.

نویسندگان

  • M Müller
  • G G Somjen
چکیده

In interfaced rat hippocampal slices spreading depression (SD) and hypoxia-induced SD-like depolarization are associated with increased light reflectance and decreased light transmittance, indicating increased light scattering. By contrast, mild hypotonicity or electrical stimulation decrease light scattering, which is usually taken to be caused by cell swelling. This difference has been attributed to experimental conditions, but in our laboratory moderate osmotic challenge and SD produced opposite intrinsic optical signals (IOSs) in the same slice under identical conditions. To decide whether the SD-induced IOS is related to cell swelling, we investigated the effects of Cl(-) transport inhibitors and Cl(-) withdrawal on both light reflectance and transmittance, as well as on changes in interstitial volume and tissue electrical resistance. In normal [Cl(-)](o), early during hypoxia, there was a slight decrease in light reflectance paired with increase in transmittance. At the onset of hypoxic SD, coincident with the onset of cell swelling (restriction of TMA(+) space), the IOS signals suddenly inverted, indicating sharply increased scattering. The SD-related IOSs started in a single spot and spread out over the entire CA1 region without invading CA3. Application of 2 mM furosemide decreased IOS intensity. When [Cl(-)](o) was substituted by methylsulfate or gluconate, the SD-related reflectance increase and transmittance decrease were suppressed and replaced by opposite signals, indicating scattering decrease. Yet Cl(-) withdrawal did not prevent cell swelling measured as shrinkage of TMA(+) space. The SD-related increase of tissue electrical resistance was reduced when bath Cl(-) was replaced by methylsulfate and almost eliminated when replaced by gluconate. The TMA(+) signal is judged to be a more reliable indicator of interstitial space than tissue resistance. Neither application of cyclosporin A nor raising [Mg(2+)](o) depressed the SD-related reflectance increase, suggesting that Cl(-) flux through mitochondrial "megachannels" may not be a major factor in its generation. Fluoroacetate poisoning of glial cells (5 mM) accelerated SD onset and enhanced the SD-induced reflectance increase threefold. This suggests, first, that glial cells normally moderate the SD process and, second, that neurons are the predominant generators of the light-scattering increase. We conclude that light scattering by cerebral tissue can be changed by at least two different physical processes. Cell swelling decreases light scattering, whereas a second process increases scattering. During hypoxic SD the scattering increase masks the swelling-induced scattering decrease, but the latter is revealed when Cl(-) is removed. The scattering increase is Cl(-) dependent, nevertheless it is apparently not related to cell volume changes. Its underlying mechanism is as yet not clear; possible factors are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices.

During hypoxia in the CA1 region of the rat hippocampus, spreading-depression-like depolarization (hypoxic spreading depression or HSD) is accompanied by both a negative shift of the extracellular DC potential (DeltaV(o)), and a sharp decrease in light transmittance (intrinsic optical signal or IOS). To investigate alterations in mitochondrial function during HSD and normoxic spreading depressi...

متن کامل

Temporo-Spectral Imaging of Intrinsic Optical Signals during Hypoxia-Induced Spreading Depression-Like Depolarization

Spreading depression (SD) is characterized by a sustained near-complete depolarization of neurons, a massive depolarization of glia, and a negative deflection of the extracellular DC potential. These electrophysiological signs are accompanied by an intrinsic optical signal (IOS) which arises from changes in light scattering and absorption. Even though the underlying mechanisms are unclear, the ...

متن کامل

Electrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices

Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...

متن کامل

Mild Acidosis Delays Hypoxic Spreading Depression Neuronal Recovery in Hippocampal Slices

Severe tissue acidosis has been viewed traditionally as a damaging component of cerebral hypoxia. However, a neuroprotective action of low pH during hypoxia has been described in primary neuronal cultures. To identify and characterize this effect in mature brain tissue, adult rat hippocampal slices were made hypoxic after adjusting pH, with HCI or NaOH. Ion-selective microelectrodes were positi...

متن کامل

Mitochondrial inhibition prior to oxygen-withdrawal facilitates the occurrence of hypoxia-induced spreading depression in rat hippocampal slices.

Oxygen withdrawal blocks mitochondrial respiration. In rat hippocampal slices, this triggers a massive depolarization of CA1 neurons and a negative shift of the extracellular DC potential, the characteristic sign of hypoxia-induced spreading depression (HSD). To unveil the contribution of mitochondria to the sensing of hypoxia and the ignition of HSD, we modified mitochondrial function. Mitocho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 4  شماره 

صفحات  -

تاریخ انتشار 1999